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NOTATION

a, bi, Ci, di, f4, gi Coefficients representing edge rotation and displacement per unit

a, big c, di, fig gi edge or surface load for shell elements of short length

E A3

D i  V2 Flexural rigidity of shells
12(1 -,2)

EA , Es  Young's modulus of annulus and shell materials, respectively

Hi, Ni Discontinuity shearing forces normal to axis of symmetry

hi  Shell thickness

I Length of shell element between stiffeners

M , Mi Discontinuity bending moments in a meridional plane

Pi Axial stress-forces due to axial portion of p

p Hydrostatic pressure

Ri, R/ jRadial distances from axis of symmetry

r Variable radial distance from axis of symmetry

wiA  Radial displacement of annulus edges

1 Radial displacement of shells

X Axial coordinate taken along shell element

11/3 1-V
2)

EStrain

of Axial rotation of shells

All], A[2], A[ 31  Lambda functions defining edge effects and interaction of edge

A[41, A151 A[ 61  effects for shell elements of short length

v Poisson's ratio

a Stress
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ABSTRACT

A theoretical analysis of the axisymmetric elastic deformations and

stresses in a web-stiffened sandwich cylindrical shell structure under ex-
ternal hydrostatic pressure is presented. The solution is based on the use

of edge coefficients for plate and shell elements of finite length, and in-
cludes the computation of the edge forces and moments arising at the

common junctures of these elements.

Equations are given for computing numerically the longitudinal and
circumferential stresses in the two coaxial cylindrical shells and the radial

and tangential stresses in the web stiffeners between the two shells.

No consideration was given to the discontinuity effects arising from
rigid or elastic restraints afforded by contiguous bulkhead or adjacent shell

structures. Thus, the analysis presented herein is applicable only to a

typical bay of a web-stiffened sandwich cylinder of long length.

A numerical example is presented to illustrate the use of the equations
developed in this report.

INTRODUCTION

The David Taylor Model Basin, under initial sponsorship by the Office of Naval

Research and later continuance by the Bureau of Ships, has been investigating the feasi-

bility of sandwich-type construction for pressure hull application. Results of exploratory

experimental studies carried out under this program1 have shown that in-certain ranges of

geometry strength-weight advantages on the order of 20 to 25 percent higher can be realized
with sandwich designs over the conventional ring-stiffened cylindrical configuration. These

results were obtained from model tests of sandwich-type cylinders having "hard" cores; i.e.,

the cores were capable of developing high compressive strengths in addition to transmitting

the pressure loading by shear from the outer to the inner shell.

At the time these sandwich cylinders were conceived, no formulas were available on
which to base an optimum design; merely intuition and engineering judgment were resorted

to for proportioning the structural elements. Concurrently with the experimental program,
analytical studies were initiated to develop rational formulas based on thin-shell theory for
predicting the elastic deformations and stresses in the structural elements of such sandwich-
type cylinders.

In this report, equations are developed for carrying out a complete stress analysis of
a typical portion of a web-stiffened sandwich cylinder under external hydrostatic pressure.

1 References are Hated on page 37.



The method is based on the use of edge coefficients of plate and shell elements of finite

length, and satisfaction of force and moment equilibrium and compatibility of deformations

at the common junctures of the elements comprising the structure. Expressions for edge

coefficients of cylindrical shells of short length are developed in Appendix A.

GENERAL CONSIDERATIONS

Methods of analysis based on the use of edge coefficients have found wide application

in studying stresses and deformations in complex structures composed of ring, plate, and shell

elements. 2 - 5 The underlying concept in this type of analysis is that a complex physical

structure can be broken down into identifiable components for which mathematical solutions

exist or can be found readily. The deformations occurring in each structural element are deter-
mined in terms of unknown forces and moments assumed to exist at the junctures common to

these elements. Conditions of equilibrium and compatibility are then satisfied at each of the

junctures, thus permitting determination of the redundant forces and moments. With this
information, a complete stress analysis for each structural component can then be performed.

The present problem of the stresses in a web-stiffened sandwich cylinder subjected to
hydrostatic pressure, shown in Figure 1, can be solved rather conveniently by the use of edge

coefficients. The identifiable structural elements in this case are two coaxial cylindrical

Outer Cylindrical Shell

Web Stiffener
nner Cylindrical Shell -

Figure 1 - Web-Stiffened Sandwich Cylinder
Subjected to External Hydrostatic Pressure

I tt t t f t t t I It t f t
Jtuncture I

shells, one subjected to radial pressure and an end load and the other to an end load only,

and annular discs subjected to radial loads on the two circular boundaries. The webs or
annular discs act as the connecting and stiffening members to the two shells. A free-body
diagram showing the breakdown of the physical structure to its component parts, together
with appropriate, but as yet unknown, edge forces and moments, is presented in Figure 2.

2



Juncture 17
Outside Shell MI n

Figure 2 - Free-Body Diagram Showing T
Forces and Moments Acting on Shell
and Web Elements of Web-Stiffened Web

Sandwich Cylinder

InerShelIH %212 2 
1

2 Juncture 2

Following the method of References 2, 3, and 4, the deformations occurring at the

edges of a shell element of general meridional shape can, by simple superposition, be written

in terms of the unknown edge forces and edge moments and known applied loading as follows:

Wi= di i + + -i*Pi 4 f"p i + f1"P + dii^ i + g1iQi + fP.i! [1]

6i = aimi + biQi + crPi + cr p + c ':Pi + aiMli + biiQi + cfiPi  [2]

where the coefficients ai, bi, . . . frf'.are the amount of transverse deflection or meridional

rotation, as the case may be, per unit bending moment, shearing force, axial force, or surface

pressure loading, as shown in Figure 3. The coefficients with the double subscripts, i.e.,

PP

Figure 3 - Shell Element of Arbitrary
Meridional Shape Subjected to Edge

Moments, Shears, Forces, and \
Surface Loading

ai], bi,, ... fi, are the interaction coefficients which reflect the deformations at edge "i"

due to forces and moments at edge "j." By replacing i-*j and j-.i in Equations [1] and [2],

expressions for the deformations w i and 0 can be written immediately.

Note that the effect of the end load P on the deformations w, and 0i has been separated

into three distinct components. The components denoted by the single-primed coefficients

and ci'are those due to bending effects. The same is true of the components associated

with the coefficients f!, and c&, but these also reflect interaction influences. The components

3



denoted by the triple.primed coefficients fi".and ci" are essentially Poisson effects on the

membrane deformations.

For the specific problem of cylindrical shell elements symmetrically loaded, as shown

in Figure 4 and considered in this report, Equations [1] and [2] become:

, Mx = +0 D xw

-QX P OX dMx

P IIP
X

+M' +1 1 tS +MX i (MXa mM
2 at Qx HI/2

Figure 4 - Sign Convention for Cylindrical-Shell Element (Symmetric Case)

= iM! + g, + f'pS + fi p + f,",pS + d,1M +gi-- +ff [31

0~~~~~~ a T +c'p+ "i i i + 6..Pi [4]
' £ I i 22 1.

and similar expressions for w and 8i, respectively. However, for the case of a cylinder some
of the terms appearing in Equations [3] and [4] become zero; this will be shown later. In
addition, for the pressure loading shown in Figure 1, where the inner cylindrical shell is not

subjected to the radial pressure loading, those terms in Equations [31 and [4] that are multi-

plied by p will drop out when the deformations of the inner shell, i.e. i = 2, are considered.
Following the same technique employed for the shell elements, the deformations

occurring at the edges of the circular annuli or web elements, as shown in Figure 5,

MU +H1A

+ W A I A

Figure 5 - Sign Convention for

+0 Web Element
+ A

+wAA

+WA %H i
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can be written in terms of the unknown edge forces and moments and known applied loading

as follows:

A iA [5]

,, + = F M + + aij M [6]

where it has been assumed that the edge moments 0/A, axial thrusts pA, and surface pressure

p do not give rise to any radial displacement w in the plane of the circular annulus. Equations

[5] and [6] give the deformations at boundary i of the circular annulus; the deformations at the

other boundary, say j, can be obtained by replacing i by j and j by i in Equations [5] and [6].

The expression for the edge rotations 0 and 0A of the annulus are rather general to include

the case in which the sandwich void between the two cylinders may become pressurized. This

problem will not be considered in this report. In a later section, it will be shown that due to

symmetry the edge rotations of the annulus are zero. Furthermore, for the particular case of

pressure loading shown in Figure 1 and considered in detail later including a numerical ex-

ample, not only are the edge rotations and equal to zero but every term in expressions

[61 is zero. In such a case it is tacitly assumed that the web stiffeners act only to resist

hoop compression and do not act in the sense of a circular plate to resist bending due to edge

moments and edge shears.

In Reference 4, for instance, equations were developed for computing discontinuity

stresses at cone-cylinder junctures, either with or without transverse reinforcement. For

that problem it was tacitly assumed that the shell elements were each of semi-infinite length

so that the deformations at their common juncture were not influenced by boundary effects at

the others ends. This permitted the use of rather simple expressions for the edge deformations.

For the present problem of the web-stiffened sandwich cylinder, the elements com-

prising the structure are of such proportions that interaction of internal edge effects is very

predominant. This necessitated the development of edge coefficients for cylindrical shell
elements of finite length. However, it turns out that the forms of the new coefficients are

exactly the same as those of Reference 4 except for multiplying factors which are functions

of the shell geometry and, primarily, the length. These edge coefficients for a cylindrical

shell are written in the following convenient form:

Ea+ Diffi A+(f3il)

ESb D 1[- 8

EScP Ec"= Ec": Ef= o
9 1 I



Esdi = + A] (p01)
2D'43

i

ESfo + -- & -.

hi

E s a i f -

[4Ta)
ESbi] =+ W i As. (il

es i, Ef j = 0

1

Ed = A PI(P il)

-2D'P?

E, i

where

Ei a.. = -- 2

i- E 12(1 - V2 ) ;/3 - ihib

The "lambda" functions PIl , API], PIS, ... AN6 appearing in the edge cooefficients,
Equations [7a], are derived in Appendix A and are defined here as follows:

sih 2C il+ sil

Aj = Efl'j)==

sinh 2 ll sin 2 fi

cosh [3il sinh O3il + cos 16i l sinjflil

sinh 2 sil - sin 2 il

1 6~ (3Z



Ccosh 3il sinh Oil - cos il sin f31

sinh 2 oil - sin 2 Oil
[81

APl(p
1 ) = 2sinh Bil sin 3 il

sinh 2 8 il - sin 2Bai l

A s i) = coshf3il sin Oil - sinh/3il cos /il

sinh 2 pil - sin2f3 i l

A[6 - cosh ilsin Oil+ sinh ifl cos Oil

sinh 2 p i l - sin 2 Bil

For convenience and ease of calculation, numerical values of the "lambda" functions in [8]
were determined with the aid of a Burroughs E-101 computer for a range of 3il from 0.40 to

2.50 in increments of 0.02. The results were tabulated and are given in this report as Table 1.
For the special case of a cylindrical shell of semi-infinite length, i.e., I--,-, the

interaction functions given by Equations [8] simplify to

A[I = A[2] = A1 1

[91
A(4 = A(1 A (61 = 0

and the edge coefficients given by Equations [7a] reduce exactly to those given in Reference 4.

From symmetry considerations it is seen that the edges of the web stiffener, which for

purposes of analysis is viewed as a circular annulus, do not undergo any rotation. This stems

from the fact that a horizontal tangent or zero-slope condition is assumed to exist at the

junctures of the webs with the two cylindrical shells. This assumption implies that the edge

moments on each shell at the shell-web junctures balance each other, so that there are no net

moments to be resisted by the web. Further, it is assumed that the web elements do not take

any axial force due to the axial pressure, but that this is all resisted by the cylindrical shells.

Thus, the analysis of the web stiffener is reduced to that of a circular annulus subjected to
axisymmetric in-plane radial forces on both its inner and outer boundaries; 6 see Figure 2.

On the basis of these assumptions, it is necessary to derive edge coefficients for an annulus

undergoing radial deflections only. Such coefficients are developed in Appendix B and are

given here as follows:

7
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EA gA f+ R

EA A291g2 =+ 8 + V)

where A = 2 A2

92I + 1V- 2

1
= 1 + - ; R2 = R2 -T

[lOb]

A3  1 2

COMPUTATION OF STRESSES

The formulas given herein for determining the longitudinal and circumferential stresses

in the shell elements of the web-stiffened sandwich cylinder are developed in Appendix C.

Formulas for the radial and tangential stresses in the web elements are developed in Appendix

B. The derivation follows very closely the general analysis of Reference 7 for ring-stiffened

cylinders under hydrostatic pressure, the only differences arising from the elastic restraints

at the shell edges and the distribution of the axial pressure loading.

The nomenclature and sign convention used in Reference 7 and in Appendix C of this

report are shown in Figures 2 and 4. A longitudinal bending moment MX is considered posi-

tive if it tends to put the outer surface of the shell in tension, and a transverse shearing force

Qx is considered positive when it acts in a direction away from the axis of symmetry but in

the positive z-direction. A hydrostatic pressure p is considered positive when it is external,

and negative when internal. With reference to Equations [1] and [2], the subscript i is used

to distinguish the two cylinder elements.

The quantities H, and M, shown in Figure 2 are the edge shearing forces and bending

moments arising at the junctures of the shell elements with a web stiffener. They may be

determined in terms of the geometry and elasticity of the structure and the pressure loading

by enforcing conditions of force and moment equilibrium and compatibility of deformations

at the junctures. This determination is developed in the next section.
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Once the edge forces and moments are known, the following formulas may be used for

determining the critical longitudinal and circumferential shell stresses which occur at a point

midbay between two adjacent webs and also at a web location, respectively:

AT MIDBAY:

<a, - -(-,A) 'f-l A 2](p ,/2) [

a°m = - "- + - (-wi') - (w'-t) [12]
hi  R A ](pil/2) (1-v2) A~2](p l/2)

AT WEB:Eh A (pl/2)
aXf (W -W i) [13]

Ox= hi (Il-VI)  APl(pi/S

+ ( pl2 va) fl____ Alil(j /2)
P E' Eh AI(i)

a s- -- +  w - to') [14]

i  A I(il2 (1 2)  A[21(pIW

where in the above equations i = 1, 2, and the upper sign is for the outer fiber and the lower
sign for the inner fiber of each shell plating. Equations [11] through [141 are developed in

Appendix C.

Once the critical stresses are determined from Equations [11] through [14], the

question as to how they combine to precipitate axisymmetric collapse of the cylindrical shell

elements can be answered by recourse to the failure criteria discussed in References 7 and 8.
This will not be discussed here.

The quantity !i in Equations [11] through [14] is the axial load taken by each of the

two cylindrical shells. On the assumption that the two shells contract the same amount
longitudinally, it is shown in Appendix D that

10



v1 Rtht )1~~t vEsht 41 rAH) E8Ai AN+AH)

FRt1pR1 I v(1-a)+ R- 1  2)]v ~ + i (I 21 - -- 2  1) 2

a2 R2 4&2

[151

pR V(i-a') R 2 R 2 R1 R 1 Y2 1)a2

I ji~~~~~~ ~~~ R2  2R h2a) - (~ 1 gH) 1  (~N+~ 1 aPR 2=

The quantities i 1 and t 2 are given in Appendix D by Equations [D.13].

The quantities w~i in Equations [11] through [141 represent the particular integrals to the

differential equations governing the axisymmetric deformations of a cylindrical shell; they are

easily determined from membrane theory. For the case shown in Figures 1 and 2, where the

outer cylindrical shell (but not the inner one) is loaded by lateral pressure, we find that (see

Reference 7, for example)

=f + - Esl R1 P,

[16]

1 h2  R2 P

where the axial forces P1 and P2 are given by Equations [15].

The shell edge deflections w! appearing in the stress formulas, Equations [111] through

[14], are determined from Equation [3] once the edge shears Hi and edge moments Mi are

known; i.e.,

W= d1 I  + g, 2 + f1P +  + fl..P + diM1 + g, 2 + f'P

[17]
112 W2 H:

2 d2M2 + 91
2 2 + + P + f2 "'P + 2d 2M2 + 92 7 +;2-

where the interaction coefficients have been designated by a "bar" instead of the double sub-

script so as not to confuse the use of the subscripts "1" and "2" to designate the two shells

and their respective junctures with the web stiffeners. This notation will be used in all the

equations that follow.
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Expressions for the radial and tangential stresses in the web elements are developed

in Appendix B. It is shown there that the maximum radial stress occurs at the intersection
with the outer cylindrical shell (i.e., at r = R= + /, and the maximum tangential

SI a2
stress occurs at the intersection with the inner cylindrical shell i.e., atr- R2 -R2 - 2

These maximum stresses are given by the following expressions:

= A(I+V) --- (1 -V [18]
m ax (I1_ V) R 2

EA FA i
= A(1+v) + -(1I - [19]

max (V2) 12

where the constants A and B are given by

_w .1 1-W2R2)

1 R2

[201

B=RR 2  2 -R2)
1 2

and the annulus edge deflections w A and wA by Equation 151 as

[21]

2 g2  2  1

In Equations [21] the edge coefficients designated by a "bar" are the interaction or double-

subscript coefficients; i.e., 1  g A
1 2 and A =A 1. The edge coefficients appearing in

Equations [211 are given by Equations [10].

DETERMINATION OF EDGE SHEARS H,/ AND EDGE MOMENTS Hi

For the case of symmetry on each side of a web stiffener, the conditions of force and

moment equilibrium at each of the two junctures of the web with the shells are rather obvious;

these are shown in the free-body diagram of Figure 2. There remains to determine the unknown

edge shears H, and H2 and unknown edge moments M, and M2 by enforcing conditions of com-
patibility of the deformations at the junctures labeled "1" and "2."

12



Continuity and symmetry conditions at joint "1" require that

s= WA [221

Os = A  0 [231

whereas these conditions applied to joint "2" require that

S = WA [24]

2 2

0, = =0 [25]

Substituting Equations [3], [41, [5], and [6] into the four conditions [22] through [25],
considering the zero edge coefficients by virtue of the loading shown in Figures 1 and 2 and

Equations [7], and assuming that Es - EA, we must solve the following four algebraic equations

simultaneously to determine H,, H2, M1 , and M2:

Mi [d1 +d1] + 1HI (gl+g 1)- gIA]+12 [_A] =- 1,, _fl,,p 26]

M [a+a-l+ H [.L(b+bi) =0 [27]

~2[d 2 +d21 + H2 [12 (9 2 + 92) - 92 + H~ ~4 92 2 f2 [28]

M2 [a2 + a21 + 112 [KL (b2 +E2)1 0 [29]

where P and P are given by Equations [15] to be functions of the unknown shearing forces

H, and 112. Equations [26] through [29] can be rewritten as two equations in only two

unknowns as follows:

1[,' (g +) _gA b- j (d,+1,) 1 [-i ] "- f.. -,'+ + 1 [30]

HI [_-A] + H g-A (b2+b 2)(d2 +d2)1
](' 2 J - -2f2"22  [311
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By the substitution of the expressions for P, and f2 given by Equations [15] into Equations

[30] and [31], the two simultaneous equations to be solved for H1 and H2 become:

(bl+ b1)(d, + d1 ) vE'h 1  aly R 2 t 292111! (gl+j-1)-g1 - 2 o(,.+a 1) + 11 f1'("  I 1v 2 /)

H-] Ig + gjA + [--- ' ; , /' . . . . P ; f' " +I 3 .

2 2 a+ (1 a,) 2 -2 , 1v a +1 V2( 2) v~

L 2 I

___ ___________ + 11 I.(1-a2+~ ~-
N iI R h (I "

112 - v-1  ( t 222 23 2) a, +  - a2]

I T-- fg + ) gA I( 2+ 2 + -2 f -1< 2 -R 2)[2

2 t7~1 + -- (1 -- 2 a 1-v 2 a + W(1- _a2)

2 1 1 a-A

f2 [233]

R1/

11 a A + -- 2

1 1A I' 2~I R 2h 2+

1-v-d--+ .(1- 2a2

H2  f 2o n + 1 1 2he olv 2 a + lowing ex ress ions(as on ( q1 2 + of a ti n 2

L[ R 12 a 2

2 ~ ~ t7I2 '

H ~~b 2 (9 +92 9

F- 11+ -(11V- 1 2)

PRI [V(1-~j111 A 1 R( l) a

After the edge shears H1, and 112 are determined from Equations [32] and 133], the edge moments

Miand M 2 may be found from the following expressions as a consequence of Equations 1127] and
129], respectively:(b+ )

MI =-1H -_ [34]
2 (a1 + a,)

M2 = -2 2 Y [35]
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NUMERICAL EXAMPLE

As part of its research and evaluation program to study the application of glass-fiber

reinforced plastics for pressure vessel construction, the Model Basin in collaboration with

Narmco Industries Inc., San Diego, California,' is presently designing a series of web-stiffened

sandwich cylinders made of these materials. The structural models are to be fabricated by

Narmco and then forwarded to the Model Basin for testing.

One of the designs, Model N-1, presently being conceived will be used as a sample

calculation to illustrate the use of the equations developed in this report. The detailed

dimensions are shown in Figure 6, and are summarized here:

h, 0.142'

T 0.755*

Figure 6- Schematic Diagram Showing t2 0.124 ).290" R, 3.493T

Dimensions of Model N-1 2 3 .062

hi -0.142 in.; h2 = 0.124 in.; hA3  0.107 in.

R1 = 3.493 in.; R2 = 3.062 in.; I = 0.648 in.

R i -3.564 in.; R2 - 3.000 in.

Es _f6.0 x 106 psi - EA

V- 0.15

Using Equations [7b] for each of the outer and inner cylindrical shells, respectively,

we compute the values of 0,1 and D' to be:

0 = 1.204; D1' 24.407 x 10 - 5 in. 3

021 = 1.376; D;2= 16.257 x 10- 5 in. 3

The lambda functions are either computed by using these values of Pl and Equations [8] or

are found by interpolation from Table 1 for each of the two shells. They are summarized here:

A[1] A[2 1  A[3] A[4] A[51 A[6]

Outer Shell 2.219 2.162 1.694 1.981 0.8061 1.567

Inner Shell 1.778 1.655 1.502 1.471 0.6906 0.9805
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Next, the shell-edge coefficients Eaj, E'b, E~c', . . . etc., are computed by using

Equations [7a]. The numerical values thus found are summarized here:

Shell Edge Outer Shell Inner Shell
Coefficient (i = 1) (1 = 2)

E'a,, in. - 2  + 0.4767 x 104 +0.4795 x 104

Esbi, in. - 0.1317 x 104 -0.1213 x 104

ES iE8 i 0 0

Esdi, in. - 1  + 0.1317 X 10 4  +0.1213 × 104

Esfi 0 0
Es , in. +85.9229 nonexistent

Esfi"P"  - 3.6898 -3.7040

Es 9i - 0.05410 x 10 4  -0.04822 x 10 4

Es i, in. - 2  - 0.3455 x 104 -0.2840 x 104

Esbig in. + 0.1176 x 1 0.1003 x

Esdi, in.- 1  - 0.1176 x 104 -0.1003 X 104

Efs" 0 0

Es!Ti + 0.02575 x 10' +0.02217 x 104

The web stiffener or circular annulus edge coefficients EAg A , . . . etc., are computed by

using Equations [10], and the numerical results found are:

E A g A - 190.261

EA 9 A E A -9 " 161.949

EAgA- 168.564

EA-A - EAg21 - 192.396

The components of the end pressure loading taken by each of the outer and inner

cylindrical shells, respectively, are computed to be, using Equations [15]:

P - + 0 . 9 8 4 3 p lb/in.

P2 - + 0.8695p lb/in.

With all this, the edge shear forces H1 and H12 are computed by solving Equations [32)

and [33] simultaneously. The values thus found are then substituted into Equations [341 and

[35] to determine the edg. bending moments M, and M2 . The numerical values thus found are:

H1 - + 0.3893p lb/in.

H12 - - 0.2717 p lb/in.
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M + 0.0209 5 p in.-lb/in.

M2 - - 0.01459 p in.-lb/in.

When the edge shear forces and edge bending moments are known, the edge deflections

of the two cylindrical shells and those of the web stiffener, at their common juncture points,

are found from Equations (17] and [21] to be:

Ew'w = + 30.072 p lb/in.

EAwA - + 30.072 p lb/in.

Euw = + 29.105 p lb/in.

EAwA - + 29.105 p lb/in.2
Comparison of E'wj' with E AwA, and V 2 with Ew A affords a check on the numerical

1 22~
calculations, since the boundary conditions [22] and [241 enforced at the two junctures

require them to be equal in their respective cases since it was assumed that Es = EA.

The maximum radial and tangential stresses in the web stiffeners can now be com-

puted by using Equations [181, [191, and [201. The values found are:

ar  - - 3.638 p lb/in.2
max

a - - 10. 0 8 3 P lb/in. 2
max

Before the shell stresses can be computed, it is necessary to determine the membrane

deflections of the two shells. This is done with the aid of Equations [161. The values found

are:

E'wP1 - + 82.291 p lb/in.

EstOw2 - - 3 .220 5 p lb/in.

Finally, the critical longitudinal and circumferential shell stresses at points midbay

between two adjacent web stiffeners and at a web stiffener are determined by using Equations

[111, [121, [131, and [14]. The numerical values are summarized as follows:

_X__ , Psi oa(D, Psi "Xf , Psi a'fp Psi

Outer Shell -10.039p -10.437p -13.166p -10.584p

Inner Shell - 9.843p -12.702p -12.704p -13.514p

For the numerical example considered, the calculations already carried out have been

based on the assumption that all structural elements have the same elastic modulus E. How-

ever, in the fabrication of a shell structure such as this, it is conceivable that the elements

17



could have different material properties. In the case of Model N-i, which is to be made of a

glass-fiber reinforced plastic, it is expected that the web stiffeners, although made of the

same basic material as the cylindrical shells, will have a higher elastic modulus by virtue of

the fiber distribution. Assuming that the modulus of the web material is 50 percent higher

than that of the shell material, i.e., EA - 1.5 Es, we repeated the calculations and found the

following results:

P1 = + 0 .9 8 4 2 p lb/in.

P2 = + 0.8696 p lb/in.

Hi = + 0.4166 p lb/in.

H2 = - 0.2449 p lb/in.

M1 = + 0.02242p in.-lb/in.

M2 = - 0.01315 p in.-lb/in.

ESwS + 26.406 p lb/in.

EAwj4 = + 39.609 p lb/in.

$2 = + 25.919 p lb/in.

E 2Aw + 38.878 P lb/in.

Ewf =+ 82.291 p lb/in.

E~w = 3.2211p lb/in.

a x 3.894p lb/in. 2

max

a, = - 13.303 p lb/in. 2

malx

a XmPsi atm, psi aXf , psi 0 qf , psi

Outer Shell -10.256 p - 9.442 p -13.603p - 9.600 p

Inner Shell - 9.565 p -11.658 p -12.144p -12.390p
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APPENDIX A

DERIVATION OF THE FUNCTIONS All], A[2], A[1 , A[41 , A151, AND A161

If the beam-c,,lumn effect 7 due to the axial portion of the hydrostatic pressure is

neglected, then the differential equation governing the axisymmetric elastic deformations,

based on small-deflection theory, of a thin-walled circular cylinder is given by: 7

d 4W h V
U - - w= iPr -- Nx A1

di' R 2 R

The homogeneous form of Equation [A.11 will be used to derive edge coefficients for cylin-

drical shells of short length in which interaction effects between the two ends of the shell

prevail. Then we have

d4 w h
D - +E-- w=0 [A.21]

d*4  R 2

The solution7 of Equation [A.2], which solution describes the bending deformations, can be

written in the form:

Wb(8) - C 1 cos)3z, cosh 3z + C 2 sin Bz.cosh 8z
[A.3]

+ C 3 cos /Ox.sinh Bx + C4 sin /3z.sinh 3.

and the first three derivatives of [A.3] are:

1 d b
- - & (C 2 +C 3)cosBz'cosh3z + (C4 -C 1 )sinf3z'coshpz
13 dz

+ (C4 + C1 ) cos 3x, sinh /X + (C2 - C3 ) sin 3x, sinh jz

1 d2Wb
-ff C4 cos/3x, cosh/3z - C 3 sin/3x, cosh/Ox
2/ 2  d' 2  [A.4

+ C 2 cosrnz .sinh Px - C 1 sinBx .sinh )go

1 d3 b

(C - C3 ) cos 3x, cosh 3Bx - (C4 + C 1) sinOx, -cosh Oz
283 dz 3

+ (C4 -C )cos 13z. sinh W - (C2 +C 3 ) sin Ox.sinh Ox

where in Equations [A.3] and [A.41 we have =)

19



The integration constants C1 , C2 , C 3, and C 4 appearing in Equations [A.3] and [A.4]

will be determined from a consideration of the load boundary conditions at the edges of the

shell element; see Figure 4. The longitudinal bending moment M. and the transverse shearing

force Q, are related to the derivatives of wb(Z) by the following equations:

d2 Wb

Mx =+D -- d 2

d_ 2

[A. 5]

dMx  d3 Wb
Qx= - = + D-

dx d 3

With reference to Figures 4 and 7, let it be prescribed that the load boundary con-

ditions are given by:

ML OL 0Figure 7 - Edge Shears, Moments,
LeI(L dg L , - -- Agt(~Eg Deflections, and Rotations For

a Cylindrical-Shell Element

1

at + 2 Mx = MR; Q, = QR [A.6]

1
atz=--- : ; = L Q L [A.7]

No considerations of symmetry with respect to the point x=O have been taken in writing the

solution Equation [A.3], and in formulating the boundary conditions, Equations [A.6] and [A.7].

The development to follow will be general in this sense.

The substitution of Equations [A.41 and [A.5] into the boundary conditions, Equations

[A.61 and [A.7], results in the following four equations:

- = C4 cos , cosh - C 3 sin /.cosh 2
2Dp 2  2 2 2 2

+ COcos *sinh C- - Ctsin -- sinh 02 2 2 2

20



QR 3 113 3
- =(C 2 -C 3 ) COS .cosh - - (C4 +C 1)sin - .cosh -

2O/g2
+ (C4 -C 1 )cos -- .sinh _3-(C+3sn-_.. .sinh -.l~2D32 2 2 2

+ C C)CS h2 - (C 2 +C 3 ) sin 2 n
[A.8]

ML 131 /31 81 A--L =C4 cos- cosh - + C 3 s in '-- cosh

2D32 2  2 2 2

-C2 cos .sinh - -C sin 2 sinh T2 2 2 2

-QL PI 1181A
- = (C 2 -C 3 )cos - .cosh - + (C 4 +C 1 )sin - cosh
2D[33  2 2 2 2

- (C4 -Cj)cos sinh ,-- - (C2 +C 3 )sin .'- sinh PI
2 2 2 2

Solving Equations [A.8] simultaneously gives the following expressions for the four

integration constants C1, C2, C3 , and C4 :

(QR +QL) P3I 81
C,(sinh Al +sin 131) =- cos - .cosh -

2D3 3  2 2
(MR +ML) / /31 131 1 131

+ cos - sinh - -sin -- cosh -

2D 2  2 2 2 2

(QR + QL) 31 )1
C4 (sinh/3l + sin131) =- sin - •sinh -

2 D13 2 2
(MR +ML) ( 81 1 131 131

+ (cos -. sinh - +sin - *cosh
2D 2  2 2 2 2

[A.9]

(QR -QL) 31 1
2 ( s i n h 1-sin 3) =- sin - *cosh -

2D 3  2 2

(ML-MR) PI 1in [3 I 13lCOS c ,osh - + sin - .sinh -

2Dp12  2 2 2 2

(QR -QL) 13l 13l

03 (sinh P31- sin 813) = - cos - sinh -

2D3 3  2 2

-MR (o 13 f cosh 11 -sin T ih

2D 2  2 2 2 2
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If Equations [A.9] for the integration constants are substituted into the deflection

function, Equation [A.3], and the resulting expression is then evaluated at the two edges of

the shell element, i.e., at x = ± - for the right and left edges, respectively (see Figure 7),
2

the following equation is obtained:

( s n 2  p s n 2  t w ] ± L( R + Q L )
(sinh[1) sin E W + (cosh,81 + cos (1) (sinhfl11-sin /1)

2 4Dp3

(QR -QL)
i (cosh3 l-cos 8l)(sinh31 +sin l)

4D/3

(MR + ML) [A.IO0

+ (sinh8l-sin3) 2

4Df3 2

(ML -MR)
- (sinh.81 + sin pl)2

4D,(3

The bending component of the total deflection at the right (R) edge, i.e., at X = + - , is
2

then expressed in terms of the applied edge shears and edge moments by the following:

QR cosh l'sinh/3l -cos l1.sin 1
[wO]R .. ... .....

2DO3 sinh 2/3l - sin2 ,)
QL (cosh/3lsin/3l-sinh6lcosl

2DO 3  sinh2pE/ sin 2161

MR 
s in h 2B3  +  sin 2 p i n [A.11]

2D. 2  sinh 2 01 - sin 2 31/

ML (2sinh/3l " sin 1

2D8 2  sinh 2 pl - sin 2 f91
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1The bending component of the total deflection at the left (L) edge, i.e., at x , is then
2

expressed in terms of the applied edge shears and edge moments by the following:

QL ( cosh3l 'sinhl1 -cos81 .sin8l

2D, 3  sinh 2 /31 - sin 2 13

QR (coshf3l'sin.31 -sinh3l.cosf81

2D/33  sinh2 I - sin 2 pi3

[iA. 12]
ML sinh 2 B1 + sin 2 ,l

2D6 2  sinh 2 1 - sin 2 31)

MR 2 sinh /31. sin (31

2D3 2  sinh 2 /31 - sin 2 /3

Comparing the terms of Equations [A.11] and [A.12] with the corresponding terms of
Equation [1] and the appropriate edge coefficients, Equations (7a], shows that

A[3](f/1)= cosh1. sinhf81 - cos PI . sin 1

sinh2 831 - sin 2 831

A[S](51)- cosh 1 . sin 31 - sinh /31. cos l

sinh 2 13l - sin 2 /31
[A.13]

A[1](/3l) = sinh2 /3 + sin 2 31

sinh 2 /l - sin 2 /31

Ah4a(/3l) = 2sinhBl • sinlI

sinh2 /31 - sin 2 /31

The other two lambda functions, namely, A[2] and A[6 ] , enter into the equations for the
edge rotations of the shell element, and expressions for these two functions are derived next.

When Equations [A.9] are substituted into the first derivative or slope function, Equation
[A.41, the slopes at the two edges of the shell element, i.e., at z = - for the right and left
edges, respectively (see Figure 7), are given by: 2
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2 0dsi 1 (QR-QL) (QR + QL)nhnWn ) (R- )(sinh01 +sin ,8) 2 T (sinh 6l-sin pl) 2 +
L.- - 4D/ 2  4O( 2

2

(ML -MR)
S(coshfl + cos (l)(sinh61+sin6l) + [A.14]
2D3

(MR +ML)
+ (cosh(fl-costft) (sinh1 l-sin Bl)

For those terms in Equation [A.141 which have the double signs, it is intended that the upper

sign apply to the right edge and the lower one to the left edge.

Thus the rotation at the right (R) edge, i.e., at z = + - , is expressed in terms of the2
applied edge shears and edge moments by the following:

Fdwb] QR /sinh 2 fpl+sin2 .3 1 Q2L / 2 sinh 01 -sin 01

dX J x=+ - 2D B 2  sinh 2  (It-sin2 1 / 2D)9 2  sinh 2  f-sin 2 a )

2

MR (cosh31. -sinh (1 + cos 3. - sin, 81
. .. .. . .+ [A.15]

D3 sinh 2 l - sin 2 /

ML (cosh31.'sin3l + sinh f1.cos, (3
+ D-'o sinh 2 (3 - sin 2 (1

l
and the rotation at the left (L) edge, i.e., at z = - ,is expressed in terms of the applied2
edge shears and edge moments by the following:

+F[dwb] QL sinh2 l+sin2 Bl QR 2sinh(3l.sinfl

L- -= 2D(3 2 sinh 2 (/-sin 2 31 2DB2 (sinh 2 61-sin2 (1
2

ML ( cosh/31.sinh0l + cos(31"sinl
+ [A.16]

Do " sinh 2 ( - sin2 (31
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MR ( coshfl 'sin31 + cosil'sinh 131
+ Do sinh 2f8l - sin 2 pI3

Comparing the terms of Equations [A.15] and [A.16] with the corresponding terms of

Equation [2] and the appropriate edge coefficients, Equations [Ta], shows that the remaining

two lambda functions, besides those defined by [A.131, are given by:

A[2 1(/l) = cosh/31 sinh 8l + cos 8l. sin{3l

sinh 2 3l8 - sin 2 131

[A. 17]

A[6(/3) = cosh 0/1. sin PI + sinh P31. cos /31

sinh2 /3 - sin 2 /3

Consequently, the set of functions defined by Equations [A.13] and [A.17] are exactly those

given as Equations [8] earlier in the report.
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APPENDIX B

DEVELOPMENT OF EDGE COEFFICIENTS AND EXPRESSIONS FOR THE
RADIAL AND TANGENTIAL STRESSES OF A CIRCULAR ANNULUS

With reference to Equation [5] and Figure 5, it has been assumed that the edge moments

MA, axial thrusts pA, and surface pressure p do not give rise to any radial displacements w'A

in the plane of the circular annulus. Only the inplane forces ' 4 and H I acting on the outer

and inner circular boundaries, respectively, of the annulus give rise to such deformations.

On Page 418 of Reference 6 the following expression is given, based on the Lanme or
plane-strain solution for a thick-walled tube subjected to simultaneous internal pressure p,

and external pressure po:

r2 (1 -v)(pi r 2 -Por 2 ) + (1+v)(Pi-P0 )ri2 o
= B.1I

rE( r - r)

where ri and ro are the radii to the inside and outside circular boundaries, respectively, of

the tube, and pi and p0 are the radial pressures acting on the inside and outside surfaces,
respectively, of the tube. The variable "r" is the radial distance from the axis of the tube

to a point in question through the thickness of the tube wall.

Adapting the solution, Equation [B.11, to the present problem of the circular annulus,

we see that

ro= Ri; r i = '

[B.21

Po = + & ; pi = -
t t

Substituting [B.21 into [B.1] and adapting the sign convention of Figure 5 for positive radial

displacement, we obtain the following results:

S(l-Y)(HAR
2 IA _'_2 1+ )H+H _R2

- 2 T - [B.3]

To find the edge coefficients g1 4 , gA, gA, and gA appearing in Equation [5] and its counter-

part in which i-+j and j-.i, it is only necessary to substitute the following successive four con-

ditions into the basic solution, Equation [B.3]:
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Toget g: set r=W,; , 1  =0; 0,= -1 [B. 41

A rR,; I :11 =1 -0 [B. 5]

9 j A r  = = 11A - [B. 6

A. r = ; 11  = 0 ; 0 =1  [B. 7]

Thus conditions [B.4], [B.5], [B.6], and [B.7] when substituted into Equation [B.31 lead to

the following equations, respectively:

A (1+) ?R1 P 1 ,/- k
E~tR ~ +2  [B. 81

=EAt(R?_fiR/) 
L 1+ V '

A (1 +~iR 2
1  21 .~~)-

g T [B. 91

EA t( fi 2)

I [B.101

A (vi2R N 2+ l

With i-,1, j-*2, and t=A3 , Equations [B.81, [B.9], [B.101, and [B.111 become exactly Equations

[lOa], respectively.

For expressions [61 for the edge rotations of the annulus, symmetry and loading con-

ditions for a typical bay of the web-stiffened sandwich cylinder far removed from end effects

dictate that these rotations not only total zero but each and every component is zero. The

more general case shown in Figure 5 and reflected by Equations [6] will be considered in a

separate report.

Equations [181 and [19] for the radial and tangential stresses, respectively, in the cir-

cular annulus are derived next by following the solution given on Pages 415 to 418 of

Reference 6. The plane-strain theory applied to the axisymmetric elastic deflections of a

thick-walled tube results in the following differential equation:

d2u 1 du u- + - 0 [B.12]
dr2  r dr r2
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where u is the radial displacement at a point in the wall of the tube at a radial distance "r"

away from the axis of the tube. The solution of Equation [B.12] is given by:

B
u(r) = Ar + - [B.13]

The integration constants "A" and "B" are determined from the following deflection boundary

conditions:

at r= R: u=-wjA

[B.141r = i#: U--Wi

Substituting the conditions [B.141 into the solution [B.13] gives:

W-_- ( i Ai

[B.15]

ij.

In Reference 6 the radial and tangential stresses, respectively, as a function of the

distance "r," are as follows:

or = EA+ [B.16]
(1 -v 2 ) [i, ]

EA F t du1
at = -- + V- [B.17]

(1- V2 ) L dr

dts(r)
Substituting the deflection u (r) and its first derivative from Equation [B.13] into

Equations [B.161 and [B.17] yields:

ar =EA AB I(B18(1 )- (I+ [1.181

V) (1+v) _2]
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Note
A

ar + at = 2EA - constant [B.20]

which is a consequence of the plane-strain assumption, i.e.,

v

6z = - (a , + a ,) = constant [B.21]

Equation [B.21] results by putting the axial stress az equal to zero in the three-dimensional

Hooke's law.

The maximum radial stress a occurs on thc outer boundary of the annulus, i.e., at

r = RL whereas the maximum tangential stress at occurs on the inner boundary, i.e., at
max

r = R., This together with i-*1 and j-*2 results in Equations [18] and [19].
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APPENDIX C

DEVELOPMENT OF EXPRESSIONS FOR THE SHELL STRESSES,
EQUATIONS [11 THROUGH [14]

In Reference 7 Salerno and Pules developed a theory for the axisymmetric elastic

deformations and stresses in aring-stiffened, perfectly circular cylindrical shell subjected to

uniform external hydrostatic pressure. Equations developed by these authors for the critical

shell stresses are'reviewed here and adapted to the present problem of the two coaxial cyl-

inder elements comprising the web-stiffened sandwich cylinder structure; see Figure 1.

From symmetry considerations (Figure 4), the general solution for the bending defor-

mations, i.e., Equation [A.3], simplifies to:

Wb(X) = C, cos ox. cosh /3x + C4 sin fOx. sinhoxa [C.1]

The particular integrals to the differential Equation [A.1], which constitute the membrane

deformations and which must be added to the bending component [C.1] to get the total deflec-

tion, are given by Equations [16] for the outside and inside cylindrical shells, respectively.

The loading condition to which Equations [16] apply is shown in Figure 1. The total deflec-

tion can thus be written in the following form to apply to both cylinders:

UO) Wb(x) + wp = C, cos.Bx.coshfPz + C 4 sin/3z.sinhf3z + wP [C.2]

The first derivative or slope expression is then given by:

dw (x)dz) = (C 1 +C 4 )f cos0x .sinhO - (C 1 -C 4)p3sinf0x.cosh 0z [C.3]

The integration constants C1 and C4 are determined from the following deformation

boundary conditions:

1 dwi

at x=± I : w w W - -¥ Oi =0 [C.41
2 d[

When the conditions [C.4] are substituted into Equations [C.2] and [C.31, the constants C1

and C4 are found to be:
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cos • sinh - +sin - -cosh

C 2 2 2 2 ____2_

cosh - sinh--l +sin 0(wpws) -
2C 2 2 2/ A 2 L

[C.5]

/os "sinh f -sin - cosh A1 5) -
(C 2 2 2 22

\cosh *sinh - +sin - cos A[ 2]
2 2 2 2) 2

where the lambda functions A[2], A151 , and A[6] are defined by Equations [8].

The principal stresses in the longitudinal and circumferential directions of the shell

elements are given by the following expressions, respectively:

P

w PO,- + Vxb [C.7]

where the first term in Equation [C.6] and the first two terms in Equation [C.7] are the

corresponding membrane stress components and the remaining terms are the bending components.

In terms of the shell curvatures, the stress expressions [C.6] and [C.7] become (see, for

example, Reference 7):

P Eh d 2w (z)ax ( X) = -  - - [C.81
h 2 (1 -v 2 ) dx 2

w(X) P vEh d2 w(z)(x E - v - + - [ C.91
R h 2(1-v') dx2

Substituting the deflection w(x) and the second derivative of w(z) from Equation [C.2] into
the above, gives the following equations:
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PX(Z)- + 2 -Csin fOx.sinh fx+ C 4cos Ox -cosh fx] [C.1Ih (1 _ V )

PC vh1I+ 2

EID(x)=- wP- -V +E + C4  cospx.cosh/3x+o (x=- h t (i_2)

[c.11]
SC4 .hAO 2

-E + (1 - C1  sin o3. sinh/3

Once the constants C, and C4 as given by Equations [C.5] are substituted into

Equations [C.10] and (C.11], the distributions of total longitudinal and total circumferential

stress between adjacent supporting elements, imposing the restraint conditions defined by

[C.4] on the shell "edges," can then be determined.

Of particular interest are the critical stresses that occur at a point between adjacent

supporting elements, i.e., at x = 0, and immediately at a supporting element, i.e., at

= - - ; see Figure 4. These critical stresses are found from Equations [C.10] and [C.11]2

to be:

AT MIDBAY (z = 0):

aXrC h(- 2  0 4  [C.12]

P [C 1  Ivh32
R wP -v +E + C4  [C.13]

AT A SUPPORT (x = ±

P + Ehfl2 E C, sin .sinh L +Ccos .cosh -i [C.141x 2) 1 2 2 +  2 2J

32



E P I C VhP 2 1 l PI 0
Er'f wP_ VV +0E4 cos- *cosh - +L h R (1- v2) 2 2

[C.151

FC 4  h 2

E - + C5 sin sinh
L I (1V2) 2 2

The substitution of Equations [C.51 for the constants C 1 and C 4 into Equations [C.12]

through [C.151, and the introduction of the lambda functions defined by Equations [8] into the

resulting expressions lead to Equations [11] through [141, respectively, for the critical shell

stresses.

The total deflections at midbay, i.e., x = 0, and at a web stiffener, i.e., x = - , can

be found by using Equations [C.2] and C.51. These are, respectively: 2

A[61/)

W(O) = -(_ 2)  + up [C.161

A[ 21 (P±)

w =- F A[6 cos - cosh-

2 A[21 '612 22
(2

[C. 171

+ A15 ]  sin- sinh A + u p

23 2 2
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APPENDIX D

DETERMINATION OF AXIAL-PRESSURE LOAD DISTRIBUTION
TO THE TWO COAXIAL CYLINDERS

With reference to Figure 8, if it is assumed that the web elements do not resist any

axial load, then force equilibrium in the longitudinal direction requires that

P

P2 W, ' f1 Figure 8 - Distribution of Axial-Pressure

h2 I FLoad to the Two Cylindrical Shells
- R-p

R2

pR2
P1iR 1 + P2R 2  2 [D.11

where the axial stress forces P, and P2 in the outer and inner cylindrical shells, respectively,
are the unknown quantities to be determined. To find explicit expressions for Pi and P 2

another relationship between these quantities, the applied pressure p, and the geometry of

the shells is needed.

If it is assumed that both cylindrical shells displace the same amount longitudinally,

i.e.,

UI = u2  [D. 2]

then the integral of the longitudinal midthickness strains over a stiffener spacing for each of

the two cylindrical shells must be equal. Therefore,

1/2 L/2

f1 (1XM) dx = 1/ (.xM) 2 d- [D.31

Equation [D.3] is a consequence of the strain-displacement relation

dz

34[D.4]
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Introducing the two-dimensional Hooke's law,

1
9, E- (a.,a - o)

[D.51

t.=0 (aO-va.)

into Equation [D.3], we obtain

f1/ 2 [1_V)aM- Ee MdXf1/ 2 [1_V)ax-EeM [D. 61
0 1( 0) 2-E~ d~ (~j~x~,sM

Since the longitudinal membrane stress and the circumferential membrane strain in each of

the two shells are given, respectively, by:

°xM = [D.71

w 
[D.81

then Equation (D.6] becomes:

12 [(1.v 2)p 1/2~ V2___ p__

0v _j dz= 1 27 -v ] 2 dx [D. 910h, 1 1 [0 Eh2

Substituting the deflection function [C.21 together with the appropriate expressions

for the membrane deflections wP? for each of the two shells from Equations [16] into Equation

[D.9], carrying out the indicated integrations, and finally introducing Equations [241, [221,

and (211 into the resulting expression, we obtain
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A ll ] 2 A l ]
P, -2 C- j(.q Al +~12 A[

h 1 [3 1 ( J 1?1 F~ 2 A"1

[ e a t[ 21

P;when they are solved simultaneously, the following expressions are found:

PAll P1 R-[D 1

p R -,(- ) + - v~a +- (gj/11 +HAu)a ,- 1 g -A+ l)

2 2 R2  R 2 222  1 [D.121

222
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where

A[ A[l] "'
2 a (D. 131a--1 A[21 (13) ,a 2 '2 A[21 (02')
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